Автор: [Адам Гибсон, Джош Паттерсон]
Название: Глубокое обучение с точки зрения практика
Все, что должен знать разработчик-практик, чтобы приступить к применению глубокого обучения для решения реальных задач!
Интерес к машинному обучению зашкаливает, но завышенные ожидания нередко губят проекты еще на ранней стадии. Как машинное обучение - и особенно глубокие нейронные сети - может изменить вашу организацию?
Эта книга не только содержит практически полезную информацию о предмете, но и поможет приступить к созданию эффективных сетей глубокого обучения.
Авторы сначала раскрывают фундаментальные вопросы глубокого обучения - настройка, распараллеливание, векторизация, конвейеры операций - актуальные для любой библиотеки, а затем переходят к библиотеке Deeplearning4j (DL4J), предназначенной для разработки технологических процессов профессионального уровня.
На реальных примерах читатель познакомится с методами и стратегиями обучения глубоких сетей с различной архитектурой и их распараллеливания в кластерах Hadoop и Spark.
Концепции машинного обучения вообще и глубокого обучения в частности
Эволюция глубоких сетей из нейронных
Основные архитектуры глубоких сетей, в т.ч. сверточные и рекуррентные нейронные сети
Как выбрать сеть, отвечающую поставленной задаче
Основы настройки нейронных сетей вообще и конкретных глубоких архитектур
Применение методов векторизации к данным различных типов.
Подробнее:
Скачать:
Название: Глубокое обучение с точки зрения практика
Все, что должен знать разработчик-практик, чтобы приступить к применению глубокого обучения для решения реальных задач!
Интерес к машинному обучению зашкаливает, но завышенные ожидания нередко губят проекты еще на ранней стадии. Как машинное обучение - и особенно глубокие нейронные сети - может изменить вашу организацию?
Эта книга не только содержит практически полезную информацию о предмете, но и поможет приступить к созданию эффективных сетей глубокого обучения.
Авторы сначала раскрывают фундаментальные вопросы глубокого обучения - настройка, распараллеливание, векторизация, конвейеры операций - актуальные для любой библиотеки, а затем переходят к библиотеке Deeplearning4j (DL4J), предназначенной для разработки технологических процессов профессионального уровня.
На реальных примерах читатель познакомится с методами и стратегиями обучения глубоких сетей с различной архитектурой и их распараллеливания в кластерах Hadoop и Spark.
Концепции машинного обучения вообще и глубокого обучения в частности
Эволюция глубоких сетей из нейронных
Основные архитектуры глубоких сетей, в т.ч. сверточные и рекуррентные нейронные сети
Как выбрать сеть, отвечающую поставленной задаче
Основы настройки нейронных сетей вообще и конкретных глубоких архитектур
Применение методов векторизации к данным различных типов.
Подробнее:
Cкрытый контент, нужно авторизируйся или присоединяйся.
Cкрытый контент, нужно авторизируйся или присоединяйся.
Возможно, Вас ещё заинтересует:
- [NFE] Внедрение Cisco SD-WAN (Viptela) . Базовый курс (2024)
- [Udemy] Живой баг-баунти и этический хакинг 2025 (2024)
- [Stepik] Python - Модуль 3 (Библиотеки и файлы) (2024)
- [IT Start] Создание телеграм-ботов на Python с фреймворком Aiogram 3 (2024)
- [Андрей Коптелов] Корпоративная архитектура на основе TOGAF