Автор: МФТИ
Название: Математика для анализа данных. Часть 1 (2020)
Программа курса:
Дискретная математика, 1 неделя:
Вы научитесь использовать теорию множеств для формализации математических идей, получите представление об основных комбинаторных объектах и их свойствах, научитесь решать задачи по комбинаторике: такие задачи часто встречаются на собеседованиях в IT-компании.
Математический анализ, 2 недели:
Вы изучите теоретические основы математического анализа в том объеме, который необходим каждому Дата Сайентисту: познакомитесь с понятиями предела, производной и интеграла, научитесь дифференцировать и интегрировать. Также в этой главе вы изучите важнейший для обучения нейросетей аппарат минимизации значений функций.
Линейная алгебра и аналитическая геометрия, 2 недели:
Вектор - это основная сущность для любой модели машинного обучения. Поэтому векторную алгебру должен свободно уметь применять любой исследователь данных. Вы научитесь производить операции над векторами и матрицами, получите геометрическую интуицию векторного пространства и узнаете, как линейная алгебра применяется в анализе данных.
Теория вероятностей, 2 недели:
Теория вероятностей кроется за каждой моделью машинного обучения. Вы изучите основы теории вероятностей, научитесь работать со случайными величинами, вычислять математическое ожидание и дисперсию, а также узнаете, почему данные часто имеют нормальное распределение.
Математическая статистика и элементы аналитики, 2 недели:
Статистический анализ - это незаменимый инструмент исследования данных. Вы изучите способы извлечения простейших закономерностей из данных, научитесь формулировать и проверять гипотезы о данных, овладеете корреляционным анализом.
Подробнее:
Скачать:
Название: Математика для анализа данных. Часть 1 (2020)
Программа курса:
Дискретная математика, 1 неделя:
Вы научитесь использовать теорию множеств для формализации математических идей, получите представление об основных комбинаторных объектах и их свойствах, научитесь решать задачи по комбинаторике: такие задачи часто встречаются на собеседованиях в IT-компании.
Математический анализ, 2 недели:
Вы изучите теоретические основы математического анализа в том объеме, который необходим каждому Дата Сайентисту: познакомитесь с понятиями предела, производной и интеграла, научитесь дифференцировать и интегрировать. Также в этой главе вы изучите важнейший для обучения нейросетей аппарат минимизации значений функций.
Линейная алгебра и аналитическая геометрия, 2 недели:
Вектор - это основная сущность для любой модели машинного обучения. Поэтому векторную алгебру должен свободно уметь применять любой исследователь данных. Вы научитесь производить операции над векторами и матрицами, получите геометрическую интуицию векторного пространства и узнаете, как линейная алгебра применяется в анализе данных.
Теория вероятностей, 2 недели:
Теория вероятностей кроется за каждой моделью машинного обучения. Вы изучите основы теории вероятностей, научитесь работать со случайными величинами, вычислять математическое ожидание и дисперсию, а также узнаете, почему данные часто имеют нормальное распределение.
Математическая статистика и элементы аналитики, 2 недели:
Статистический анализ - это незаменимый инструмент исследования данных. Вы изучите способы извлечения простейших закономерностей из данных, научитесь формулировать и проверять гипотезы о данных, овладеете корреляционным анализом.
Подробнее:
Cкрытый контент, нужно авторизируйся или присоединяйся.
Скачать:
Cкрытый контент, нужно авторизируйся или присоединяйся.
Возможно, Вас ещё заинтересует:
- [Stepik] Python - Модуль 3 (Библиотеки и файлы) (2024)
- [IT Start] Создание телеграм-ботов на Python с фреймворком Aiogram 3 (2024)
- [Андрей Коптелов] Корпоративная архитектура на основе TOGAF
- [Александр Сокирка] Разработка сайта на WordPress (2024)
- [k-syndicate.school] Addressables - anesthesia (2024)